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1. Introduction

Parallel D-branes can behave collectively rather than independently, providing strange,

non-Abelian physics. The phenomenon occurs when the distance between the branes be-

comes of order of the string length. Then the strings stretching between them [1] have

massless states, in addition to the already present massless states of the strings going from

a brane to itself. In the worldvolume description this corresponds to the N U(1) groups,

one for each brane, filling out to one U(N) symmetry. So the N U(1) Born-Infeld vectors

become arranged into one U(N) Yang-Mills vector V while the transverse scalars become

non-Abelian U(N) matrices Xi. These matrix coordinates still contain the information

about the coordinates of the distinct branes: the I-th eigenvalue of Xi is the i-th co-

ordinate of the I-th brane. In general however, U(N) matrices can not be diagonalized

simultaneously, such that an uncertainty exists on the coordinates.

The worldvolume action of such a multiple brane should encode the physics resulting

from the non-Abelian structure. Defining a Born-Infeld action is a highly non-trivial prob-

lem, but the Chern-Simons part seems to keep a simple structure. Still, also the latter

receives some important modifications. The first generalization of the Chern-Simons term

to the U(N) case consisted of defining the Born-Infeld field strength F as a U(N) field

strength F = 2∂V + i[V, V ] and adding a trace to the action [2]:

SDp = Tp

∫

P [C] Tr{eF} = Tp

∫

∑

n

P [Cp−2n+1] Tr{Fn}, (1.1)

where F is defined as F = F + B.

Then it was observed that the background fields should depend on the matrix coordi-

nates via a non-Abelian Taylor expansion [2, 3]:

Cµν(x
a,Xi) =

∑

n

1

n!
∂k1

...∂kn
Cµν(xa, xi)|xi=0 Xk1... Xkn . (1.2)
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Together with a change from ordinary world-volume derivatives to covariant derivatives

Da = ∂a + i[Va, .] [4, 5], and the symmetrized trace prescription [6], here denoted by STr,

the action becomes invariant under the U(N) symmetry. The resulting action, though,

does not fit with T-duality [7]. Indeed, T-duality requires extra terms proportional to

commutators between the transverse coordinates [X,X]. The final multiple D-brane Chern-

Simons action looks like:

SDp = Tp

∫

STr
{

P [e(iX iX)(CeB)] eF
}

, (1.3)

where (iX iX) stands for inclusion with the transverse scalars, (iX iX)Cp = 1
2 [Xρ,Xσ ]×

Cσρµ1...µp−2
. The same result was found for D0 branes using matrix theory techniques

[8, 9]. The new couplings proportional to the commutators allow the brane to interact

with background fields of rank n higher than the brane dimension p + 1. Due to the non-

Abelian couplings, fuzzy brane solutions [7, 10], which react like a dielectric to the higher

rank background fields, become possible.

Gauge invariance of the multiple brane action is discussed in [11, 12]. In the latter it

is argued that the non-Abelian pullback affected the question of gauge invariance. Indeed,

naively filling in the variation δCµν = 2∂[µΛν] into the pullbacked field yields:

δ STr
{

DaX
µDbX

νCµν

}

= STr
{

DaX
µDbX

ν∂[µΛν]

}

. (1.4)

This is not a total derivative, which would mean that e.g. the truncation of the D6 brane

action where all fields but C7 are zero, would not be invariant under R-R gauge transfor-

mations. Therefore R-R transformation of pullbacked fields was redefined as follows:

δ STr
{

P [C2]
}

= 2∂ STr
{

P [Λ1]
}

= STr
{

2DP [Λ1]
}

, (1.5)

which is by definition a total derivative. By analogy, full transformations are defined also

for the dielectric fields1:

δΛSTr{P [(iX iX)Cp]} =

[(p−1)/2]
∑

n=0

STr
{

(p−2)!
2nn!(p−2n−3)!DP [(iX iX)Λp−2n−1]P [Bn] (1.6)

+ (p−2)!
2n−2(n−1)!(p−2n−2)!DP [iXΛp−2n−1]P [(iXB)Bn−1]

+ (p−2)!
2n−2(n−2)!(p−2n−1)!

DP [Λp−2n−1]P [(iXB)2Bn−2]

+ (p−2)!
2n−1(n−1)!(p−2n−1)!

DP [Λp−2n−1]P [(iX iXB)Bn−1]
}

.

These modified variations led directly to the invariance of the multiple D-brane action

with respect to R-R gauge variations. The question of invariance under NS-NS transforma-

tions is more subtle, because it is directly linked to coordinate transformations. Defining

matrix coordinate transformations is still a unsolved question, though quite some progress

is made by [13 – 15]. However, using T-dualities the NS-NS variations can be fully derived

1The square brackets in the summation denote the integer part.
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without the need of coordinate transformations. T-duality performed on the Born-Infeld

vector V and its variation δVa = −ΣρDaX
ρ led to the discovery that the matrix coordinates

are affected by a gauge variation of the form [16]

δXµ = iΣρ[X
ρ,Xµ]. (1.7)

This causes also the pullbacks, the commutators [X,X] and the background fields, which

depend on the matrix coordinates, to transform under Σ. For example, the variation of

the NS-NS twoform B is

δP [B] = 2P [∂Σ] − 12iP [(iX iX)(B∂Σ)] + 2i(iX iX)B P [∂Σ]. (1.8)

Besides the transformations due to the dependence on the coordinates, which are the two

last terms, we see that the proper variation has not been changed to a modified form

such as (1.5). Instead, the NS-NS variation follows what we will call further on the naive

definition: varying every factor (X-dependence of the fields, pullbacks, commutators, the

B field) and putting them just together. As a consequence of the different definitions, two

forms which are related by S-duality, namely C2 and B, have different gauge properties.

In this work we will compare the naive variation, which was fit for B, to the modified

variation of the C’s. For the R-R variations, the naive and the modified definitions are

equivalent, which will be proven in section 2 for the case of the D6 brane. In section 3 is

taken care of the NS-NS variations, whereof a modified version does not seem to exist. A

subtlety concerning the symmetrized trace prescription is described in the appendix.

2. R-R transformations

To compare the two definitions, we will look at the D6 brane. Its action, though being

easy, has all the features of a non-Abelian Chern-Simons action:

LD6 = STr

{

1
∑

r=0

3
∑

n=0

ir

r!

(−1)n+r7!

(7 − 2n)!2nn!
P

[

(iX iX)rA7+2r−2n

]

Fn

}

, (2.1)

where the background forms Ap are defined as

Ap =

[p/2]
∑

k=0

p!

(p − 2k)!2kk!
Cp−2kB

k. (2.2)

First we look at the truncation B = F = C9 = 0:

Ltrunc1
D6 = STr

{

P [C7]
}

. (2.3)

The modified variation is defined by being a total derivative and turns out to be a covariant

derivative of the pullbacked field:

δmod Ltrunc1
D6 = 7∂ STr

{

P [Λ6]
}

(2.4)

= STr
{

7D
(

P [Λ6]
)}

.
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Working out this variation gives:

δmodL
trunc1
D6 = STr

{

7P [∂Λ6] + 21iΛµ1...µ6
[F[ba1

,Xµ1 ]Da2
Xµ2 ...Da6]X

µ6

}

(2.5)

= STr
{

7P [∂Λ6]
}

= δnaive Ltrunc1
D6 .

The second term, coming from the commutator of two covariant derivatives, vanishes be-

cause we assumed F to be zero. No difference is left between the naive and the modified

definitions. We see here that, though (1.4) was indeed no total derivative, invariance is

still assured for the truncated action. Allowing F to be arbitrary restores the difference

between the definitions. One can expect this extra term cancelling variations coming from

P [(iX iX)C7]F , such that

Ltrunc2
D6 = STr

{

P [C7] + 21iP [(iX iX)C7]F
}

(2.6)

will be invariant under the naive gauge variation as well as under the modified one. Again

we will work out the modified variation and try to end up with the naive one.

δLtrunc2
D6 = STr

{

7D
(

P [Λ6]
)

+ 21i · 5 D
(

P [(iX iX)Λ6]
)

F
}

(2.7)

= STr
{

7P [∂Λ6] + 21iΛµ1 ...µ6
[F[ba1

Xµ1 ]Da2
Xµ2 ...Da6 ]X

µ6

+21i
(

10i((iX iX)Λ)µ1...µ4
[F[ba1

,Xµ1 ]Da2
Xµ2 ...Da4

Xµ4

)

Fa5a6]

+21i
(

5 Λσρµ1...µ4
[D[bX

ρ,Xσ]Da1
Xµ1 ...Da4

Xµ4

)

Fa5a6]

+21i
(1

2
· 5 ∂ηΛσρµ1...µ4

[Xρ,Xσ]D[bX
ηDa1

Xµ1 ...Da4
Xµ4

)

Fa5a6]

}

.

First we observe that the definitions differ more when there are inclusions. Indeed, in

P [(iX iX)∂Λ] the inclusion works also on the derivative; while in DP [(iX iX)Λ] the derivative

works on the inclusions. A consequence of the first observation is that the last term is only

a part of the naive variation. The naive variation can be split up like this:

STr
{

P ((iX iX)7∂Λ6)
}

= STr
{1

2
· 7 Da1

Xµ1 ...Da5
Xµ5 [Xρ,Xσ ]∂[σΛρµ1...µ5]

}

(2.8)

=
1

2
STr

{

2 Da1
Xµ1 ...Da5

Xµ5 [Xρ,Xσ ]∂σΛρµ1...µ5

+5 Da1
Xµ1 ...Da5

Xµ5 [Xρ,Xσ]∂µ1
Λσρµ2...µ5

}

.

Inserting (2.8) into (2.7) and rearranging the terms yields:

δLtrunc2
D6 = STr

{

7P [∂Λ6] + 21iP ((iX iX)7∂Λ6) (2.9)

+21i
(

Λµ1...µ6
[F[ba1

Xµ1 ]Da2
Xµ2 ...Da6]X

µ6

+5 Λσρµ1...µ4
[D[bX

ρ,Xσ ]Da1
Xµ1 ...Da4

Xµ4 Fa5a6]

− ∂σΛρηµ1...µ4
[Xρ,Xσ ]D[bX

ηDa1
Xµ1 ...Da4

Xµ4 Fa5a6]

)

−210((iX iX)Λ)µ1...µ4
[F[ba1

,Xµ1 ]Da2
Xµ2 ...Da4

Xµ4Fa5a6]

}
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The second, third and fourth line form a single commutator2:

STr
{

[Sym(Λµ1...µ6
;F[ba1

;Da2
Xµ2 ; ...;Da6 ]X

µ6), Xµ1 ]
}

= STr
{

∂ρΛµ1...µ6
[Xρ,Xµ1 ]F[ba1

Da2
Xµ2 ...Da6]X

µ6

+Λµ1...µ6
[F[ba1

,Xµ1 ]Da2
Xµ2 ...Da6]X

µ6

+5 Λµ1...µ6
F[ba1

[Da2
Xµ2 ,Xµ1 ]Da3

Xµ3 ...Da6]X
µ6

}

.

(2.10)

But what about the last line of (2.9)? It seems that this would form a single commutator

together with variations of a term like P [(iX iX)2C7]F
2. Such a term vanishes because there

are only three transverse and thus non-Abelian coordinates. If we work out an appropriate

single commutator, we get indeed the needed variation and corrections which would fit into

a transformation of P [(iX iX)2C7]F
2, but which now just vanish:

STr
{

[Sym(Λµ1...µ6
; [Xµ3 ,Xµ2 ];F[ba1

;Fa2a3
;Da4

Xµ4 ; ...;Da6 ]X
µ6), Xµ1 ]

}

= STr
{

∂ρΛµ1...µ6
[Xρ,Xµ1 ][Xµ3 ,Xµ2 ]F[ba1

Fa2a3
Da4

Xµ4 ...Da6]X
µ6

+Λµ1...µ6
[[Xµ3 ,Xµ2 ],Xµ1 ]F[ba1

Fa2a3
Da4

Xµ4 ...Da6]X
µ6

+2Λµ1...µ6
[Xµ3 ,Xµ2 ][F[ba1

,Xµ1 ]Fa2a3
Da4

Xµ4 ...Da6]X
µ6

+3Λµ1...µ6
[Xµ3 ,Xµ2 ]F[ba1

Fa2a3
[Da4

Xµ4 ,Xµ1 ]Da5
Xµ5Da6]X

µ6

}

= STr
{

2Λµ1...µ6
[Xµ3 ,Xµ2 ][F[ba1

,Xµ1 ]Fa2a3
Da4

Xµ4 ...Da6]X
µ6

}

.

(2.11)

So the modified variation and the naive one differ by two single commutator terms, which

vanish when inside the symmetrized trace.

This is easily generalized to the case of general Cp and numbers of commutators and

Born-Infeld field strengths. Thus the other terms appearing in the D6 brane action

STr
{

P [C2p+1]F
3−p + p(2p + 1)iP [(iX iX)C2p+1]F

4−p
}

(2.12)

are also invariant under both definitions of gauge transformations. The only thing yet

to do to get the equivalence for the full D6 brane action is letting B be arbitrary. This

poses no problems at all, since the fields Ap defined above are invariant under all R-R

transformations but the one with parameter Λp−1, which is true for both definitions of

gauge transformations.

δnaive STr
{

P [(iX iX)rAp]
}

= STr
{

P [(iX iX)r(p∂Λp−1)]
}

(2.13)

δmod STr
{

P [(iX iX)rAp]
}

= STr
{

(p − 2r)D
(

P [(iX iX)rΛp−1]
)}

Proving invariance of the general D-brane action under the naive gauge transformation

uses the same reasoning as for the simple case of the D6.

2See the appendix for comments about commutator manipulations inside the symmetrized trace.
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3. The NS-NS variation

The naive and modified R-R variations are equivalent, making the naive definition valid

just as in the case of the NS-NS variations. Is the opposite also possible? Namely, can we

define an equivalent modified NS-NS variation that looks like the modified R-R transfor-

mation? The answer is no. The reason is simple: the NS-NS variation appears multiplied

with other fields, unlike the R-R variation. While the difference between the naive and

modified definitions of the R-R variation can be arranged into single commutators, the

fields multiplying the NS-NS variation makes such an arrangement impossible. To see this

more clearly, we will look again at the D6 brane. The NS-NS variation is given by

δnaiveP [B] = 2P [∂Σ] − 12iP [(iX iX)(B∂Σ)] + 2i(iX iX)B P [∂Σ]. (3.1)

Only the first term is the proper variation of the field, coming from the Abelian variation

δB = 2∂Σ. A candidate for a modified variation would only differ in that first term. The

other two, being variations of the worldvolume fields V and X, remain as they are. So the

candidate modified transformation looks like

δmodP [B] = 2DP [Σ] − 12iP [(iX iX)(B∂Σ)] + 2i(iX iX)B P [∂Σ]. (3.2)

To avoid writing more terms than necessary, we will look just at the difference between the

two definitions. Only the variation of B itself changes, and the differences are:

(δmod − δnaive)P [B] = i[F,Xµ]Σµ (3.3)

(δmod − δnaive)P [[Xρ,Xσ ]Cσ...Bρ] = P [[DXρ,Xσ ]Cσ...Σρ]

(δmod − δnaive)(iX iX)B = −(iX iX)∂Σ.

It was proven that under the variation (3.1), blocks with the same R-R field are invariant,

like the D6 block

L = STr
{

21P [C5B] + 21P [C5]F (3.4)

+378iP [(iX iX)(C5B
2)] + 411iP [(iX iX)(C5B)]F + 105iP [(iX iX)C5]F

2
}

.

We will now apply the candidate modified definition to this block.

δmodL = (δmod − δnaive)L + δnaiveL (3.5)

= STr
{

21iD[a1
Xµ1 ...Da5

Xµ5 [Fa6a7],X
ρ]ΣρCµ1...µ5

−21iD[a1
Xµ1 ...Da5

Xµ5Fa6a7][X
ρ,Xσ ]∂σΣρCµ1...µ5

+210iD[a1
Xµ1 ...Da4

Xµ4Fa5a6
[Da7]X

ρ,Xσ ]Cσµ1...µ4
Σρ

+terms proportional to B or F 2
}

.

The above three terms do not form a single commutator, already because there will never

be a variation term proportional to [C5,X]. So, while the D6 brane action is invariant

under NS-NS variations defined naively for the B form, along with the variations of the

worldvolume fields, invariance is impossible for our candidate modified transformation.

– 6 –
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4. Discussion

In this paper it is proven that the modified definition of the R-R gauge variations gives the

same result as the naive one up to a single commutator. While invariance is more manifest

when using the modified definition, the naive variation is easier when regarding dualities.

In particular, we see that the S-dual twoforms C2 and B have the same gauge properties.

Equivalence is not the case for the NS-NS transformations. A candidate modified

transformation can be thought of, but the difference with the naive transformation can

not be arranged into a single commutator or anything else vanishing. This means that the

multiple D-brane actions are not invariant under modified NS-NS variations.

One can take the naive definition as definition of gauge transformations for both C and

B fields and use the modified R-R transformation to prove the invariance of the multiple

brane’s Chern-Simons action.
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A. Symmetrized trace calculations

The symmetrized trace prescription consists of symmetrizing all entries followed by taking

the trace. Hereby commutators are seen as one entry. So, if A,B,C,D and E are matrices,

STr
{

ABCDE
}

= Tr
{

Sym
(

A;B;C;D;E
)}

(A.1)

STr
{

[A,B]CD
}

= Tr
{

Sym
(

[A,B];C;D
)}

STr
{

[AB,C]DE
}

= Tr
{

Sym
(

[AB,C];D;E
)}

.

Symmetrizing is denoted by Sym:

Sym
(

A;B;C;D;E
)

= ABCDE + ABCED + other permutations, (A.2)

Due to the behavior of commutators within the symmetrized trace, care is needed when

using common commutator manipulations. Indeed, simply substituting AB−BA for [A,B]

is already problematic. While

STr
{

[A,B]CD
}

= Tr
{

Sym
(

[A,B];C;D
)}

(A.3)

is in general nonzero, the substitution would make it vanish identically:

STr
{

(AB − BA)CD
}

= Tr
{

Sym
(

A;B;C;D
)

− Sym
(

B;A;C;D
)}

= 0. (A.4)

– 7 –
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What about splitting the commutator of a product, [AB,C] = A[B,C]+[A,C]B? One

can expect that the rule does not hold when it is multiplied by other matrices. Indeed, on

the left side the A,B and C will stay together, while on the right A and B will permute

among the other matrices:

STr
{

[AB,C]DE
}

= Tr
{

Sym
(

[AB,C];D;E
)}

(A.5)

= Tr
{

Sym
(

A[B,C] + [A,C]B;D;E
)}

and

STr
{

A[B,C]DE + [A,C]BDE
}

= Tr
{

Sym
(

A; [B,C];D;E
)

+ Sym
(

[A,C];B;D;E
)}

.

(A.6)

The problem only appears when there are at least two other matrices to permute with.

In the case of a single commutator, or with one extra factor, the symmetrized trace reduces

to an ordinary trace and the rule is valid. The product inside the commutator needs to be

symmetrized itself, though.

STr
{

[Sym(A;B;C),D]E
}

= (A.7)

= Tr
{

[Sym(A;B;C),D]E
}

= Tr
{

[A,D]Sym(B;C;E) + [B,D]Sym(A;C;E) + [C,D]Sym(A;B;E)
}

= STr
{

[A,D]BCE + A[B,D]CE + AB[C,D]E
}

.

In going from the second to the third line, the cyclic property of the trace has been used.
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